Locally compact models for approximate rings

نویسندگان

چکیده

Abstract By an approximate subring of a ring we mean additively symmetric subset X such that $$X\cdot \cup (X +X)$$ X · ∪ ( + ) is covered by finitely many additive translates . We prove each has locally compact model, i.e. homomorphism $$f :\langle \rangle \rightarrow S$$ f : ⟨ ⟩ → S for some S f [ ] relatively in and there neighborhood U 0 with $$f^{-1}[U] \subseteq 4X + \cdot 4X$$ - 1 [ U ] ⊆ 4 (where $$4X:=X+X+X+X$$ = ). This obtained as the quotient $$\langle $$ interpreted sufficiently saturated model its type-definable connected component. The main point to this component always exists. In order do that, extend basic theory model-theoretic components definable rings [developed Gismatullin et al. (J Symb Log First View: 1–35, 2022, https://doi.org/10.1017/jsl.2022.10 ) Krupiński (Ann Pure Appl Logic 173.7(July):103119, 2022) case generated subrings answer question from (2022) more general context subrings. Namely, let be (in structure M $$R:=\langle R Let $${\bar{X}}$$ ¯ interpretation elementary extension $${\bar{R}}:= \langle {\bar{X}} It follows Massicot Wagner Éc Polytech Math 2:55–63, 2015) exists smallest -type-definable subgroup $$({\bar{R}},+)$$ , bounded index, which denoted $$({\bar{R}},+)^{00}_M$$ M 00 $$({\bar{R}},+)^{00}_M {\bar{R}} ({\bar{R}},+)^{00}_M$$ two-sided ideal $${\bar{R}}$$ denote $${\bar{R}}^{00}_M$$ Then first sentence abstract just $${\bar{R}}/{\bar{R}}^{00}_M$$ / $$f: R {\bar{R}}/{\bar{R}}^{00}_M$$ map. fact, universal “definable” suitable sense) model. existence models can seen structural result about subrings: every recovered up commensurability preimage any should also have various applications get precise or even classification results. For example, paper, deduce [definable] positive characteristic commensurable contained $$4X easily implies given $$K,L \in \mathbb {N}$$ K L ∈ N constant C ( K , L -approximate (i.e. cover $$X (X+X)$$ $$\le L$$ ≤ )-commensurable Another application finite without zero divisors: $$K $$N(K) divisors either $$|X| <N(K)$$ | < $$K^{11}$$ 11 -commensurable

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Compact Baer Rings

Locally direct sums [W, Definition 3.15] appeared naturally in classification results for topological rings (see, e.g.,[K2], [S1], [S2], [S3], [U1]). We give here a result (Theorem 3) for locally compact Baer rings by using of locally direct sums. 1. Conventions and definitions All topological rings are assumed associative and Hausdorff. The subring generated by a subset A of a ring R is denote...

متن کامل

fixed point property for banach algebras associated to locally compact groups

در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...

15 صفحه اول

Locally Compact Topologically Nil and Monocompact PI-rings

In this note we shall investigate a topological version of the problem of Kurosh: “Is any algebraic algebra locally finite?” Kaplansky’s theorem concerning the local nilpotence of nil PI-algebras is well-known. We will prove a generalization of Kaplansky’s theorem to the class of locally compact rings. We use in the proof a theorem of A. I. Shirshov [8] concerning the height of a finitely gener...

متن کامل

Arveson Spectrum On Locally Compact Hypergroups

In this paper we study the concept of Arveson spectrum on locally compact hypergroups and for an important class of compact countable hypergroups . In thiis paper we study the concept of Arveson spectrum on locally compact hypergroups and develop its basic properties for an important class of compact countable hypergroups .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2023

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-023-02655-1